

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

A Programmable Client-server Architecture for

functions such as PLAY, PAUSE or RECORD. Nevertheless, RTP ... example, enables to reach this sensibility without having supply a wide array of adaptations for our project. Moreover ... The client interface is a PHP web site supported.

 Télécharger le PDF

 96KB taille
 1 téléchargements
 411 vues

 commentaire

 Report

A Programmable Client-server Architecture for Adaptive Streaming Wilfried Jouve, Thomas Blin, Yves Gréalou, Fabien Verhulst {jouve, blint, grealou, verhulst}@enseirb.fr Abstract. Various architectures have been developed to cope with the fast evolving needs for audio and video streaming. However none of them was specially designed to adapt to client needs. Thus, this project consists in specifying a scalable architecture to broadcast adaptive streams. But before working on the design itself, an overview of the streaming field is carried out. The prototype which is a proof-of-concept is then described. Finally possibilities and limits of this prototype are investigated.

description with information such as media content description, IP addresses and port numbers. As for the Real Time Streaming Protocol (RTSP) [18], it gives a control over the audiovisual content by simulating VCR functions such as PLAY, PAUSE or RECORD. Nevertheless, RTP does not provide all the transport protocol functionalities and is consequently on top of another suitable underlying network or transport protocol such as TCP or UDP. In the same way, streaming multimedia with TCP alone could lead to too big end-toend delays and delay variations (jitter). Indeed, TCP implies congestion-control and retransmission until the data is correctly received. In this way, it avoids congestion collapse of the network and is fair in respect with other classes of protocols. On contrary, UDP is well-adapted for video and audio streaming; Indeed, this protocol does not possess a self-regulating and congestion-control mechanism. Yet, the best-effort nature of the Internet could lead to an unfair share of the bandwidth where UDP streaming would make TCP flows starve of network resources. A compromise had to be found: So, most of researches [31] about audiovisual streaming rely on UDP-based traffic associated with an adaptive congestion-control mechanism so that this traffic becomes TCP-compatible. In this way, the streaming transport is said to be TCP-friendly [30].

1. Introduction With the development of a vast number of devices able to display multimedia data, the ability to seamlessly deliver high quality video tailored to specific device features will become increasingly important. The convergence of telecommunications, computing and audiovisual fields leads each user to have various devices such as cell phones, PDA and laptops. Their characteristics are mixed and thus lead to new challenges for audiovisual streaming architectures. One of these challenges involves adapting one audiovisual stream to a huge number of access points features and user’s choices. In this way, the server will save both network and client resources. Thus, this project consists in specifying and then carrying out a programmable clientserver architecture to stream adaptive audiovisual contents.

2. Related Work In this section, we describe the various protocols related to audio and video streaming, the different architectures that have been developed until now, the means used to improve streaming efficiency and finally unaddressed problems in the streaming field.

2.2. Overview of existing models Two architectures are mainly used to stream media contents over the Internet. On the one hand, there is the Content Delivery Network (CDN) model which matches with the client-sever model: Several CDN servers are available at the edge of the Internet and clients get audiovisual contents from their closest servers. On the other hand, the Peer-to-Peer (P2P) model implies that clients act as servers by streaming audiovisual content to other clients. The CDN architecture requires dedicated storage and high capacity network links to answer requests from a lot of clients at

2.1. Protocols The Real Time Transport Protocol (RTP) [19] has been accepted as a standard for audio and video streaming on the Internet. This protocol goes hand-inhand with the Real Time Transport Control Protocol (RTCP) [21] which supplies feedbacks about the reception quality and enables the media synchronisation (e.g. audio and video) among other functions. The Session Description Protocol (SDP) [20] gives a session

1 of 8

most suitable one in respect with the network bandwidth. Cases in point are SureStream [13] from Real Network and Intelligent Streaming from Microsoft [12]. Some architectures use both non-scalable and scalable-based techniques such as the NetMovie platform [14] which integrates scalable streaming and stream switching. Other research has analysed the capacity of video to fit client characteristics. Different aspects have been studied from the resolution adaptation [15] to the computing power adaptation [16]. The number of colours and the audio capacities belong to these aspects. So, some bandwidth and computing power could be saved by taking heed of client terminal capacities and by sending the suitable stream. On contrary to television, the Internet allows users to have more options to modify the video. The idea to propose personalized video where participants could interact directly with movies is coming out as in interactive movies [11]. The RTSP already enables some controls over the movie as said previously. Besides, the Quasar streaming software program [17] gives the possibility to choose between smoothness and quality (frame rate vs. PSNR). Further research will offer more freedom to users such as selecting a Region of Interest.

the same time. Thus, the cost to deploy and maintain this kind of architecture is the main drawback. The P2P architecture [23] [24] helps to balance the workload across the network and so it avoids local bottlenecks on contrary to CDN. However, it needs a sufficient number of supplying clients to jumpstart the distribution process. In the middle, hybrid approaches [22] have been designed to combine advantages of these two models. They consist of CDN servers and supplying peers. Supplying peers are generally used to alleviate the load on the server. At the time of overload (flash crowd), the server redirects clients to other clients which previously got this content [24]. When streaming the same audiovisual content to a large number of clients at the same time, the multicast scenario is quite efficient to save network bandwidth since it avoids redundancy through this network. However, when streaming non-live contents, the session consists of a single client which makes multicast useless. Besides IP multicast spreads slowly over the Internet and consequently unicast is unavoidable when it comes to video streaming. 2.3. Improving the efficiency of basis models Various techniques have been carried out to enhance the streaming efficiency. Most techniques tackle this problem on account of adaptive streaming. This adaptive streaming endeavours to send the right stream to the right clients. So, the features of a stream depend on several parameters which could be taken into account simultaneously: Network features [3][4][7], client terminal capacities [15][16] and client preferences [11][17]. A programmable client-server model [1], for example, enables to reach this sensibility without having to alter existing protocols or client configuration: Interfaced with a Domain Specific Language (DSL) called Spidle [2], it could provide robustness and an integrity preservation needed by a programmable server. A lot of research focuses on the network features dimension. These include the use of scalable video such as SPEG [3] or MPFGS [4] which consists of a single base layer plus several enhancement layers [5]. The streaming mechanisms [6] [7] generally imply dropping enhancement layers according to the network bandwidth. This kind of streaming is said to be dynamic since the stream type may change during a session. In contrast, Non-scalable video techniques are another way to do streaming. It includes stream switching, bandwidth smoothing techniques [9], online scaling and video conferencing [10]. The stream switching, also known as simulcast in the TV broadcast world, involves generating several versions of the same stream and then sending the

2.4. Unaddressed problems Users’ preferences and interactivity are limited to VCR-like operations (e.g. forward and rewind). There is no way for receivers to make audiovisual contents fit their needs. Besides, very little research have dealt with adapting streaming to users’ features or/and preferences. Indeed, few architectures [33] has been designed to retrieve client characteristics and to generate the stream according to this information.

3. This project The chosen architecture follows the client-server model. Audio and video data are stored on a centralized server and are streamed to the requesting clients. Actual implementations of this structure suffer from some drawbacks: its server-centric nature makes it insensitive to client needs. Indeed, a client is mainly restrained by its resources (CPU, memory…), its screen features (resolution, colours), its access bandwidth and its available audio/video codecs. Thus, CDN architectures waste both network bandwidth and client resources by sending out streams which do not fit client features and preferences. Besides, it is useless to send an audio or video component with an inappropriate codec since the client will be unable to render it. From this, it follows that these servers implementations are limited by their

2 of 8

resizing algorithms and various modules which are loaded for decoding and encoding. Therefore, this modular architecture enables easy user extensibility. We decided to choose ffmpeg for various reasons: The audio and video conversions are quite fast; the syntax of the command line tool is really intuitive, and there are enough available audio/video conversions and codecs to supply a wide array of adaptations for our project. Moreover updated versions of ffmpeg are regularly released and the project is well documented. GStreamer is a tool that offers more possibilities concerning audio and video conversions. Unlike ffmpeg, its documentation is quite poor making it really difficult to use properly. However its design makes it a plausible alternative for future developments. Concerning Transcode, it is impossible right now to redirect its output on standard input of the streaming server. Consequently, despite its ease of use and its great number of advanced features, this tool cannot be used. This bug is well known and as long as it is not fixed, Transcode cannot be used.

fixedness and by their incapacities to adapt to clients. The purpose of this research consists in solving these problems and as a result, in making streaming servers sensitive to client needs. To answer this challenge, we have to find a way to retrieve client configurations and we have to figure out how to alter audiovisual streams according to these information. Let us imagine a user with an iPAQ who wants to watch the evening news that (s)he missed a few minutes ago. This video is available on the server but her/his Internet connection is quite low and (s)he does not care much about audio as (s)he (she/he) owns poor quality headphones. If it is her/his first connection on the server, (s)he will have to register by setting her/his login and her/his password. Then (s)he will have to add a device to her/his account and specify all its characteristics. The server will return various drivers and (s)he will be able to choose the one that fits the best her/his needs (e.g. the driver that fits a low resolution and a low audio bit rate for instance). Finally a simple click on the video (s)he wants to see will start the streaming process.

4.2. Streaming server

4. Server architecture

The open source implementation of the RTSP server from live.com was chosen. Indeed the live.com project forms a set of C++ libraries using open standard protocols (RTP/RTCP, RTSP, SIP) and can be used to build streaming applications. Moreover it already includes an implementation of an RTSP streaming server named testOnDemandRTSPServer. Live.com appeared to be the best solution since this project is well documented and the source code quite complete. Besides the community is quite active and many projects are using it.

In this section, we describe and justify the choice of the two main parts of the architecture used for the prototype: The adaptation server and the streaming server. Before streaming the video via RTP/RTSP, the stream is adapted by the adaptation server. 4.1. Adaptation server An open source implementation had to be chosen for the adaptation server to process audio and video data. Several tools could have been a support for our project. The ffmpeg project is developed under Linux and includes a command line tool to convert one audio/video format to another according to several parameters. These parameters include the resolution, the bit rate, the frame rate, the quantization and the transcoding. Most ffmpeg audio/video encoders and decoders were developed from scratch and they are all contained in a library named libavcodec. Thus, the ffmpeg tools design ensures good performances and high code reusability. The GStreamer project enables to write any type of streaming media applications. Its framework is based on plug-ins that perform particular transformations (e.g. transcoding). This project is quite interesting because its design enables developers to add new codecs or filters quite easily as there is only to write a new plug-in. The Transcode project is a set of command line utilities for video stream processing. It includes a large variety of audio and video filters as frame rate conversion or video

5. Work environment The work environment describes the means used to build the prototype. The first prototype is made of two laptops, a client using Windows XP and a server using Linux. The client device could be of any type including laptops, personal computers or iPAQs. Besides, this client is tested to work with Linux, Mac Os X and Windows. The good portability of the client follows from one of our goals: The client has not to be modified. So, a client only needs a browser such as Mozilla Firefox, Safari or Internet Explorer and a RTSP client such as Vlan, Quicktime or Mplayer. Right now, the client running Windows XP or Mac Os X operating system has to use QuickTime to play the stream received in its browser and the client running Linux operating system uses MPlayer. The server is a laptop using a Linux operating system (Fedora Core 2, kernel 2.6) which

3 of 8

holds the MySQL database, the HTTP server (Apache and PHP), the streaming sever and the adaptation server.

The form fields are the resolution, the number of colors, the bandwidth, the CPU/Memory capacity and the video codecs. The resolution has to be keyed in a text field as widthxheight. The number of colors field gives the choice between Grayscale and Colored. The bandwidth and CPU/Memory fields allow users to choose between low, average and high. Finally, the video codecs field gives the choice between MPEG1 and MPEG4. These choices are simple enough to constitute a level of abstraction comprehensible by a large scope of users. At the same time, the whole fields allow the server to have an accurate idea about the user’s terminal capacities. The ffmpeg parameters are the resolution, the color, the bit rate, the frame rate and the video codec. At this point, the goal is to find an efficient strategy to link these two levels of abstraction (user’s choices and ffmpeg parameters) and to propose the right drivers. The adaptation server database contains all drivers available on the server with a description for each of them (resolution, color, bit per pixel, frame rate and video codec). After validation of the form by the user, the 20 best drivers are ranked on account of results from the user’s form. Each driver is compared to the information given by the user and a mark is computed towards the level of correlation. For each configuration, an intermediate mark is computed for every field filled by the user: resolution, color, bandwidth and CPU/memory capacity (The video codec of the configuration has to match exactly with the one selected by the user, so no mark is computed for this choice). For example, the intermediate mark for CPU/Memory is computed on account of the frame rate determined by the driver: if the user has chosen high for this field, the driver has to be the closest to 25 frames per second to get the best mark possible. An intermediate mark may depend on more than one feature of the driver. For example, in our case, the bandwidth intermediate mark depends on the resolution, the number of bit per pixel (bit rate) and the frame rate. As shown in Figure 1, the final mark is computed with the help of weighting coefficients and a ranking of the best drivers is proposed to the user. Then, the user has to choose the driver to associate with its device. Moreover, this user can add other devices, each of them having its own driver. As a result, whatever device a user currently uses, the driver and the displaying video is adapted to its terminal capacities. A synchronization mechanism has to be designed between the server and the client of this user, in particularly to warn client when the video is ready to be streamed.

6. Implementation The client interface is a PHP web site supported by a MySQL database. The role of this database is to keep information about users, their devices and drivers available on the server. Once a user is recorded in the database, this user can open a PHP session, add devices and link each device with a specific driver. A driver consists of a host of filters; each of them achieves a particular function which adapts the stream to some client features. As every filter is achieved by a specific parameter of ffmpeg, a driver can also be seen as a set of ffmpeg parameters. Then, a user can play a video which is adapted to its current device. 6.1. Client interface and driver specification As said before, one of our primary goals is to provide a user with a video tailored to her/his terminal features. This implies retrieving this information and proposing drivers according to this information. The only way to do that is to make user fill a form with fields. Besides, most applications which depend on client features such as Real Media Player or Emule propose a form where users specify their connection speeds for instance. These fields have to be enough meaningful to be understood by the user but they also have to supply quite accurate information to the server. This information is useful to guess what drivers (ffmpeg parameters) have to be chosen to convert the original video into the one required by the client characteristics. It is obvious that a user cannot determine the ffmpeg parameters (the number of bits per pixel, for instance) needed by its terminal characteristics. As a result, a level of abstraction higher than the one given by ffmpeg parameters is needed. Then, the relevance of drivers proposed to a user depends on the strategy employed to link information given by the user with ffmpeg parameters. We have implemented an example of this concept in our prototype: we will now explain in detail the whys and wherefores of our choices.

Figure 1: Mapping between user side and server side

4 of 8

father) in order to allow the user to watch another video afterwards.

6.2. Client/Server interaction

6.3 Assessment This section describes the processing characteristics of our server and details improvements that could be achieved in the future. 6.3.1. Current server possibilities Two MPEG1 videos are currently used to test possibilities of the server (the server was also tested with MPEG2 and MPEG4 videos): They have both a resolution of 600 by 400, a frame rate of 25, and a bit rate of 2000 kbit/s (about 0.33 bit per pixel). The first video is a fast-motion sequence taken out from the movie Star Wars: Attack of the clones. The second video is a slow-motion sequence taken out from the movie Moulin Rouge. MPEG4 videos can also be streamed by the server. The server is able to stream multiple videos to multiple clients at the same time. A single user has multiple devices with a single driver for each. These drivers are 700 in number (7x5x5x2x2): There are 7 possible resolutions (600x400, 526x350, 450x300, 376x250, 300x200, 226x150, and 150x100) and 5 possible bit per pixel (0.33, 0.25, 0.20, 0.15, and 0.10): Although the corresponding parameter in ffmpeg is the bit rate which is the number of bits per second, we have chosen the number of bit per pixel which is independent towards the frame rate and the resolution on contrary to the bit rate. There are 5 possible frame rates (15, 17, 20, 22, and 25), 2 kinds of colors (grayscale and colored) and 2 possible video codecs (MPEG1/2 and MPEG4). Thus, the possible transformations are the downsizing, the transcoding from MPEG1/2 to MPEG4 and from MPEG4 to MPEG1/2, and the modification of the bit rate and frame rate.

Figure 2: Client/Server Interaction As said before, the server consists of a web server (Apache), a MySQL server, a streaming server (live.com) and a kind of adaptation server (embodied by ffmpeg). Once a user has selected a given video, the server starts the streaming server and then redirects the client to the corresponding RTSP address. To make server and client communicate together, variables of the PHP session are used. These variables are stored in a file on the server. Every client has its own file on the server, corresponding to its unique PHP session user ID. So, the client is synchronized with the server on account of PHP sessions. References to available videos (video id, path, name…) are stored in the database. In this way, the web server proposes a web page which shows available videos. When a video is selected by a user, a PHP session variable named video is set to the value of the corresponding video id and the user is waiting for the RTSP address of the wanted video. On the server-side, a bash script is reading all the PHP session files to check if a user has asked a video (i.e. if the variable video is set). When a client is actually asking a video, the bash script runs ffmpeg and the streaming server (Live.com) and then keeps checking if another client has asked a video. A pipe is used to redirect the ffmpeg output to the RTSP server input. The streaming server was (namely) modified to take into account arguments such as the PHP session filename, the requested codec or the port number which is specific to each client. When the streaming server is ready to serve the client, it warns this client by setting the variable named address to the corresponding RTSP address in the PHP session file. In this way, the client can be redirected to the right RTSP address by reading this session variable. The streaming server was also modified to fork a process before running the events loop. In this way, the father process deals with the streaming part (events loop and handlers) and the child process checks whether the client is still reading the streaming video. If the client has stopped reading the video, the child process kills the streaming server (i.e. its

6.3.2. Limits and future work A large array of transformations remains to be taken into account. Our prototype has only been designed to constitute a proof-of-concept and the lack of time prevented us from implementing other transformations. These mainly include the management of the audio part of the movies: in the same way as we have done for the video part, audio has to be adapted to the client terminal. These transformations could be the modification of the bit rate (e.g. converting 192 kbit/s into 64 kbit/s), the reduction of the channels number (e.g. converting 5.1 into stereo), the down sampling (e.g. converting 48 kHz into 41.1 kHz) and the transcoding (e.g. converting wav

5 of 8

into mp3). As a result, the processes would be the same as for video. Moreover, as MPEG4 format contains a system of layers, interesting transformations could have been added such as the background removal. Our server only enables the unicast streaming (although the streaming server on its own enables the multicast scenario). This is not really a limitation since our first aim was to carry out Video on Demand where users ask video at any moment. Thus, there is very little chance several users ask the same stored video at the same moment. On the other hand, the multicast scenario could be interesting in some situations such as for live video. Adaptations or transformations of videos are statically performed: Once a user has selected its device, the video will be streamed according to the driver associated with this device and the transformations associated to this driver remains the same during all the video playing. There are no possible extra transformations even if the network conditions are changing. A solution could be to use scalable videos such as SPEG; another way to carry out dynamic adaptations would be to perform more alterations such as lower the bit rate if the bandwidth is collapsing. Thus, in addition to the already implemented static adaptations, a video could undergo additional transformations according to the network conditions (dynamic adaptations). Although the number of clients is theoretically almost infinite (though limited by the number of ports), the server performance has to be improved in order to cope with a high number of clients. Therefore, Experiments need to be run in order to figure out how to improve the scalability of this server. In particular, our implementation obviously suffers from contextswitching overhead since the whole server consists of 3 processes (without counting handlers of the event-driven streaming server): the bash script loop, the event-driven streaming server loop and the child process of the streaming server. A way to improve the scalability of a server is to perform an efficient admission policy. In the next section, we will discuss this issue.

particular group of clients. So, in the live video scenario, groups of clients could be created with a particular driver for each of them. It appears that the number of proposed drivers should be bounded. To perform an optimization, the server should be able to register the maximum number of drivers supported. Then, the server would offer a list of the currently running drivers among a couple of predefined basic drivers to enable to cover all kind of devices settings. Thus, in period of overload, only drivers that are currently used by other groups of clients should be proposed. Concerning the admission policy of VOD streaming servers, the number of users authorized to request a video should also be examined. As our server streams video in a unicast way, each adapted stream is independently played and the streaming server cannot processes an unbounded number of streams for VOD. Therefore, it would be interesting to avoid proposing drivers that monopolize too many resources in period of high workload. For instance, we have noticed that transcoding takes a lot of resources compared to other transformations. In period of high workload, transcoding transformations should not be proposed to users in order to alleviate the load on the server. A tighter control can also be designed by deciding that a transformation is only permitted if the workload has a particular level. In our prototype, each new user session creates a new entity of a streaming server with a particular adaptation. However, GStreamer provides a plug-in option which enables to plug the live.com streaming server in GStreamer. This plug-in may reduce CPU resources consumed by each new running GStreamer thread. This solution may be explored in future work by using gstreamer instead of ffmpeg as adapter. Moreover, it could also be interesting to share a maximum number of transformations among users and the plug-in structure of Gstreamer could enable to perform such optimizations. Other systems are proposed to solve the scalability problem. It mainly consists in degrading version of the request content. To limit the number of clients and to respect the quality specified, a future work will be to implement a policy of quality of service. Some approaches as in [3] deal with an automatic mapping of user-level quality of service specification onto resource consumption scaling policies. This policy performs finegrained policy-driven adaptation over a wide-range of bandwidths levels. This idea of adapting the server behavior according to the server workload is not new. However, with the emergence of a large array of new devices able to connect to the Internet, new services are appearing such as Video On Demand, downloading or Internet for cell phones. These services obviously need the support of servers. These servers have to handle always increasing demand of always more numerous

7. Discussion: Towards Scaling Up In terms of scalability, different problems should be examined. First, streaming pre-recorded video (Video On Demand: VOD) raises kinds of problems which are different compared to streaming live video. Firstly, live streaming is performed in a multicast way to save network bandwidth since it avoids redundancy through the network. Secondly, the multicast scenario imposes that the server has to stream the same adapted stream to a

6 of 8

[3] C. Krasic and J. Walpole. QoS scalability for streamed media delivery. CSE Technical Report CSE-99-011, Oregon Graduate Institute, September 1999. [4] X. Sun, F. Wu, S. Li, W. Gao and Y. Zhang, Macroblockbased progressive fine granularity scalable video coding, IEEE International Conference on Multimedia and Expo (ICME), 461-464, Tokyo, August, 2001. [5] R. S. Ramanujan, J. A. Newhouse, M. N. Kaddoura, A. Ahamad, Eric R. Chartier, and Kenneth J. Thurber, Adaptive Streaming of MPEG Video over IP Networks, Proceedings of the 22nd IEEE Conference on Computer Networks (LCN’97), November 1997. [6] C. Krasic, and J. Walpole, Priority-Progress Streaming for Quality-Adaptive Multimedia, ACM Multimedia 2001 (Doctoral Symposium), Ottawa, Canada, October 2001. [7] M. Zink, C. Griwodz, J. Schmitt, and R. Steinmetz. Scalable TCP-friendly Video Distribution for Heterogeneous Clients. In Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking (MMCN), Santa Clara, USA. SPIE, January 2003. [9] W. Feng and J. Rexford. Performance Evaluation of Smoothing Algorithms for the Transmission of Prerecorded Video. IEEE Transactions on Multimedia, Vol. 1, No. 3, September 1999. [10] T. Turletti and C. Huitema. Videoconferencing on the Internet. IEEE/ACM Transaction on Networking, Vol. 4, No. 3, June 1996. [11] http://www.mic.atr.co.jp/~nakatsu/workshop2.html Technologies for Interactive Movies. ACM Multimedia 98 workshop. [12] B. Birney. Intelligent Streaming. http://msdn.microsoft.com. October 2000 [13] G. Conklin, G. Greenbaum, K. Lillevold, and A. Lippman. Video Coding for Streaming Media Delivery on the Internet. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), March 2001. [14] Julien Bourgeois, Emmanuel Mory and François Spies, Video transmission adaptation on mobile devices [15] Jie Huang, Wu-chi Feng, Jonathan Walpole, and Wilfried Jouve, An Experimental Analysis of DCT-based Approaches for Fine-grain Multi-resolution Video, to appear in the Twelfth Annual Multimedia Computing and Networking Conference (MMCN '05), San Jose, California, January 2005. [16] J. Hwan Jeong, C. Yoo, A server-centric streaming model, Department of Computer Science and Engineering, Korea University 2000 [17] C. Krasic, A Framework for Quality Adaptive Media Streaming Ph.D thesis. OGI School of Science & Engineering at OHSU, 2004 [18] H. Schulzrinne, A. Rao, and R. Lanphier, Real time streaming protocol (RTSP), Request for Comments (Proposed Standard) 2326, Internet Engineering Task Force, Apr. 1998. [19] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for Real-Time Applications. RFC 1889, January 1996. [20] SDP: Session Description Protocol, RFC 2327 [21] RTCP: Real Time Transport Control Protocol, RFC [22] D. Xu, S. Suresh Kulkarni, C. Rosenberg, Heung-Keung Chai, A CDN-P2P Hybrid Architecture for Cost-Effective Streaming,

services. Thus, adaptation constitutes an interesting solution to save server resources and to efficiently serve clients even in period of overload. Two kinds of adaptations can be carried out. The first one implies modifying the delivered contents (content adaptation as in this project) and the second one consists in keeping the same contents but modifying the server behavior according to the workload. An adaptive content delivery system has already been developed [34]. It consists in switching content depending on the load on the server and works for dynamic Web pages and streaming multimedia traffic. This system stores multiple copies that differ in quality and so, the quality of the content delivered will be proportional to the current workload of the server. His approach was based on transparency adaptation of content by a soft degradation of server performance without any modification of existing server software, browser or HTTP protocol. So, R. Pradhan shows in [34], that adaptive content delivery can support 25% more static requests, 15% more dynamic requests and twice as many multimedia requests as a non-adaptive server. However, this research only considers two levels of quality what is obviously insufficient to adapt to all overload scenarios.

8. Conclusions In this project, we have presented an overview of adaptation policies in the streaming field. A brand-new adaptation policy has been defined in this paper and put in practice. We have achieved our primary goal: building a streaming server which adapts to client terminal without modifying it. We have designed an original architecture: A mechanism enables to determine the best drivers in respect with client terminal characteristics and as a result, the server can deliver an adapted video. The programmable aspect is ensured by the adaptation server which tailors videos according to drivers associated to each device. Thus, our approach allows users to program service variations in the server and to adapt it to their characteristics. Finally, as a proof-of-concept, the scalability of our prototype needs to be improved to cope with high workloads.

References [1] C. Consel, L. Réveillere, A programmable Client-Server Model: Robust Extensibility via DSLs [2] C. Consel, H. Hamdi, L. Réveillere, L. Singaravelu, H. Yu, and C. Pu. Spidle: A DSL approach to specifying streaming applications. Research Report RR1282 -02, LaBRI, Bordeaux, France, October 2002.

7 of 8

[30] The TCP-Friendly Website. http://www.psc.edu/networking/projects/tcpfriendly/ [31] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi, IP Video Streaming With Fine-Grained TCP-Friendly Rate Adaptation [32] The Helix DNA Platform https://helixcommunity.org/ [33] E. Amir, S. M. Canne, and R. Katz. An Active Service Framework and its Application to Real-Time Multimedia Transcoding, in Proceedings of the ACM SIGCOMM '98 conference on Applications, technologies, architectures, and protocols for computer communication, 1998 [34] R. Pradhan, Adaptive Multimedia Content Delivery for Scalable Web Servers, Thesis submitted

[23] M. Ditze, C. Loeser, P. Altenbernd, A Peer-to-Peer Architecture for Distributed VoD Appliances in Enterprise Networks, C-LAB, Fuerstenallee 11, 33102 Paderborn, Germany [24] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, Distributing streaming media content using cooperative networking, in ACM/IEEE NOSSDAV, Miami, FL, USA, May 12-14 2002. [25] VideoLAN Home Page: http://www.videolan.org/ [26] ffmpeg Home Page http://ffmpeg.sourceforge.net [27] Live.com Home Page http://www.live.com [28] Sun Software http://wwws.sun.com/software/index.jsp [29] Real Network Home Page http://www.realnetworks.com/ in May 2001

8 of 8

des documents recommandant

[image: alt]

A Programmable Client-server Architecture for

Thus, this project consists in specifying a scalable architecture to Unlike ffmpeg, its documentation is quite poor These mainly include the management of the audio part of the movies: in appearing such as Video On Demand, downloading

[image: alt]

Programmable Digital Signal Processors Architecture

Architecture, Programming, figurable computing for DSP systems over the past 15 years. The next ... 5. Parallel Architectures for Programmable Video Signal.

[image: alt]

Programmable Digital Signal Processors Architecture

cessing applications, a data flow edge e has a non-negative integer delay del(e) associated with it. where gcd denotes the greatest common divisor operator. is any actor in G; fv: V â†’ Z is a function that maps application graph actors in

[image: alt]

Programmable Digital Signal Processors Architecture, Programming

ficient on their own to solve the system design bottlenecks. Therefore, the In this subsection, a brief overview of the different steps involved in the operation.

[image: alt]

Programmable Digital Signal Processors Architecture, Programming

An edge (v1, v2) in a data flow graph represents the communication of data ware. The objective is to construct an assignment of actors in Vappset into ...

[image: alt]

Programmable Digital Signal Processors Architecture ... - The-Eye.eu!

instruction set must also include data transfer instructions that pack and unpack data units into and provides alternatives to download new code. The RISC point multiply operations, yielding a peak performance of 500 MFLOPS (mega.

[image: alt]

Programmable Digital Signal Processors Architecture, Programming

systems. Originally, we intended to study only the IC chips for video signal pro- cessing, but along with the programming model and instruction set, is completely proprietary www.mips.com/Documentation/isa5_tech_brf.pdf, 1997. 19.

[image: alt]

Programmable Digital Signal Processors Architecture, Programming

large (up to 256 Mbit for the state of the art) but are also much slower in random access. 6. Static or Hence, most current state-of-the-art media and DSP processors use a write-back policy. TriMedia TM1000 Data Book. Sunnyvale, CA: ...

[image: alt]

Programmable Solutions for Automotive Systems

the driver in functions such as collision-free parking. Other related applications Cyclone with it's density range of 3000 to 20000 LEs. For the larger density ANSI/ISO Standard C Functionsâ€�, submitted to FCCM. 2006. [8] P. Leventis, et.

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

A - 1.1.1.3.1.3.1.1.11 Manipulate Object Resources B - 1.2.2.2.3.1.1 Game Object Component Exported Classes............. 252 The book uses clear English to explain w connect to unique alter egos, and began the â

[image: alt]

A FLEXIBLE AND EXPANDABLE ARCHITECTURE FOR COMPUTER

should demonstrate a reduced API into the component itself. The technology Specific%20Software%20Architectures%20(DSSA).pdf >. Duffy, R.

[image: alt]

A Domain-Specific Software Architecture for

plan of intended action, which intensionally describes an equivalence class of ... 11 improvises its specific course of behavior, following intended plans as well as possible, R (for regular destinations, rather than plan A for alarm destinatio

[image: alt]

Designing a novel SOA architecture for security

propose to consider the use of a Service Oriented Architecture. (SOA) to program and ... measurements, and the IT backbone infrastructure which is. Manuscript received June foundations of the upcoming Event-Driven Architecture. (EDA). ... Netwo

[image: alt]

PyPs, a programmable pass manager

directive generator, a C-to-cuda translator, a multimedia instruction generator and ... More traditional advantages of source-to-source compilers include their ease pyps a high level method â€œpoccify()â€� which acts at module or loop level and

[image: alt]

PyPs, a programmable pass manager

More traditional advantages of source-to-source compilers include their ease pyps a high level method â€œpoccify()â€� which acts at module or loop level and ... language, designed to build compilers, suffers from the same drawbacks, as there ..

[image: alt]

Programmable Solutions for Automotive Systems

Over the past number of years, automotive electronics have FPGA â€“ in this case using the Cyclone II 2C35 device available Custom Integrated Circuits.

[image: alt]

A cognitive module in a decision-making architecture for agents

Scalability: a great number of agents might be required in the simulation [1] ... the modules are strictly prioritized: a high level module inhibits all lower level modules. platform. The next step for us is to test and validate this model. We

[image: alt]

LM4250 Programmable Operational Amplifier (Rev. A)

voltage is equal to the supply voltage. Note 3: Refer to RETS4250X for military Phase Margin vs ISET. DS009300-27. Input Noise Current (In) and. Voltage ...

[image: alt]

CLUSTER ARCHITECTURE FOR ... - Xun ZHANG

ABSTRACT. We describe a dynamic reconfigurable baseband signal- processing engine suitable for mobile communications that require short operation latency ...

[image: alt]

Design of a Control Architecture for Habit Learning in Robots

putational neuroscience models have formalized this as a coordination of task of pressing a lever and entering a magazine to get food [6,13,16]) but the.

[image: alt]

Towards a Bio-inspired Architecture for Autonomic Network-on-Chip

thermore, this is in part the aim of autonomic computing, which was an ... of its computing elements. a massively parallel architecture with a diverse set of cells.

[image: alt]

a software architecture for collaborative virtual prototyping - IRIT

We will now describe the distribution of a virtual environment using VIPER. Showing how distributed virtual universes and distributed stimuli spaces can solve ...

[image: alt]

a software architecture for collaborative virtual prototyping - IRIT

commands, deictics and fuzzy parameters : "Put the bottle on the table", "Move it to the left". After studies in ergonomics, we have decided to limit our gestural ...

[image: alt]

GOCDB4, a New Architecture for the European Grid ... - Gilles Mathieu

services and users, and links this information together in a logical way. Within the ... have a reference, authoritative list: while dynamic data providers used by Grid ... the project's operational model compared to EGEE-I and EGEE-II [11]. These.

×
Report A Programmable Client-server Architecture for

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

