A new tool for embolism visualisation: The 3D X-ray ... - hervé cochard

µ. = −. µ : X-ray absorption is a function of : - atomic components. - matter density. - incident x-ray energy e, μ ... access after a proposal. • short time experiments.
7MB taille 1 téléchargements 46 vues
A new tool for embolism visualisation: The 3D X-ray microtomography Eric BADEL Hervé COCHARD

UMR PIAF, INRA-UBP 5 chemin de Beaulieu, Clermont Ferrand

ALIMENTATION AGRICULTURE ENVIRONNEMENT

2D X-ray radiography Röntgen 1895

I0

X-ray source

e, µ I

I ln( ) = − µ e I0

I0

I

thin sample 2D detector

µ : X-ray absorption is a function of : - atomic components •  integrative information throught the thickness - matter density •  spatial resolution is a function of sample - incident x-ray energy thickness and tomographic components (X-ray spot size, detector…) ALIMENTATION AGRICULTURE ENVIRONNEMENT

2-D X-ray tomography Medical scanner (low resolution)

2D tomography (high resolution)

Microfocus X-ray source High resolution detector - ln ( I / I0 ) 0.10

0.08

0.06

0.04

0.02

0 0

θ=0

Supreme Council of Antiquities ALIMENTATION AGRICULTURE ENVIRONNEMENT

The 3D µtomography

1000 to 2000 projections for 360° rotation ALIMENTATION AGRICULTURE ENVIRONNEMENT

Few X-ray tools

Small lab device

Lab device

Synchrotrons lights

X-ray

polychromatic

polychromatic

monochromatic

Beam

divergent

divergent

parallel

Spatial resolution

5-10 microns

1 micron

0.3 micron

Max sample size

4-5 cm

10 cm

1 mm

File size

16 Go

32 Go

64 Go or more

Scan time

10 min to 1 hour

10 min to 1 hour

1 s to few minutes

ALIMENTATION AGRICULTURE ENVIRONNEMENT

The synchrotron lights

ALIMENTATION AGRICULTURE ENVIRONNEMENT

The synchrotron facilities vs lab devices •  very high x-ray intensity •  fast scan time •  the sample chamber is huge (but the scanned area is not larger than for the lab tools)

•  access after a proposal •  short time experiments •  huge data to manage (1-4 To /j) •  very tiring

ALIMENTATION AGRICULTURE ENVIRONNEMENT

3D hydraulic network observation

New information about the vessels network ALIMENTATION AGRICULTURE ENVIRONNEMENT

Embolism measurements r 0 0 . 5

1

CAVITRON

Vulnerability curve

P50

Cochard et al 2005

Increasing tension and measurement of the loss of conductivity The big issue: not available for long vessels species ALIMENTATION AGRICULTURE ENVIRONNEMENT

Embolism observation and measurments Pinus sylvestris

Douglas 200 µm

Walnut tree 100 µm

ALIMENTATION AGRICULTURE ENVIRONNEMENT

What did we learn about embolism process thanks to X-ray tomography? Few experiments using synchrotron radiations or our Nanotom (Clermont-Ferrand)

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Experiments using synchrotron light and living trees

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Experiments using synchrotron light and living trees light stimulation, fan, root stress => tension in hydraulic conduits

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Live embolism spreading observation (poplar tree)

3H Loss of conductivity (%)

10 min / scan using synchrotron radiation (Swiss Light Source)

3H

3H

3H

2

Poiseuille’s law

y=100/(1+exp(a*(x-b))), r =0.993 a=-4.50, b=1.80

100 75 50 25 0

0

1

2

3

Pressure (MPa)

3H

3H

3H

3H

Live embolism spreading observation (oak tree) 3H

3H

Cavitron X-ray images

Loss of conductivity (%)

100 2

y=100/(1+exp(a*(x-b))), r =0.89 a=-1.2, b=4.3 80

60

40

20

0

1

2

3

4

Pressure (MPa)

ALIMENTATION AGRICULTURE ENVIRONNEMENT

5

6

Laurus: long vessels species -1 MPa

-3 MPa

100

100% embolized

Hacke & Sperry 2003 Dehydration Trifilo Salleo et al 2014a & Lo Gullo 1993 Trifilo Salleo et al 2014b et al 2000 Salleo & Gullo 1993 Salleo Hacke et al 1996 & Lo Sperry 2003 Salleo et Tyree et al 1998 Trifilo et al al 2000 2014a Salleo & Lo Gullo 1993 Hacke & Sperry 2003 Hacke Trifilo & Sperry 2003 et al al 2014b Salleo et 2000 et al 1996 2014a Salleo Trifilo et al 2004 Salleo Hacke et & al Sperry 2003 Air injection Trifilo etalal1998 2014b Salleo et al 2006 Tyree Trifilo et al 2014a Salleoet & al Lo1996 Gullo 1993 et Salleo Salleo et al 2009 Hacke 2003 Trifilo et Sperry al 2000 2014b Salleoet& Tyree 1998 Cochard 2002et al Salleo al 2004 Salleo 1996 2003 Hacke et & al Sperry Hacke & Sperry 2003 dehydration Salleo etetal alal1998 2006 Tyree et Trifilo 2014a Salleo et al 2004 centrifugation Salleo et 20092003 Hacke &etal Sperry Trifiloet al2006 2014b Salleo al Cochard 2002 Salleo et et al al 2009 1996 Salleo et al 2004 Salleo dehydration Tyree et 2002 al 1998 Salleo 2006 Cochard centrifugation Centrifugation Hacke & Sperry Salleo et al 2009 2003 dehydration Salleo et 2002 al 2004 Cochard centrifugation Salleo et al 2006 dehydration Salleo et al 2009 centrifugation Cochard 2002 dehydration centrifugation

100 80100 100

Percent xylem embolism Percent xylem embolism Percent Percent xylem xylem embolism embolism Percent xylem embolism

-6 MPa

Salleo & Lo Gullo 1993

Indirect Salleo et methods al 2000

80 100 60 80 80 60 80 40 60 60 40 60 20 40 Direct micro-CT 40 20 40 0 20 20 -6 -5 -4 -3 -2 -1 0 0 Xylem pressure, MPa 20 0 -6 -5 -4 -3 -2 -1 0 0 -6 -5Xylem -4 pressure, -3 -2and-1Badel 0 , submitted) MPa (Cochard, Delzon

-6

MPa -5Xylem -4 pressure, -3 -2

-1

0

Long vessel species , with big vessels do not-6show ‘R’ shaped MPa -5Xylem -4 pressure, -3 -2 -1 0 Xylem pressure, MPa vulnerability curve and can be very resistant! 0

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Embolism start Douglas

Poplar

(Dalla Salda et al, unpublished)

At the annual ring level, embolism is not a random process!

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Embolism spreading -1.5 MPa

-2.5 MPa

? Data for modelling at the cell arrangement level

Torres, Badel , Cochard et al in prep)

At the cell level, lonely seeds of embolism start more or less randomly; then spreading occurs in radial direction. Question: how? ALIMENTATION AGRICULTURE ENVIRONNEMENT

Freeze/thaw induced embolism

Freezing box

Cryo-stat

15

AEcum (%)

80 60 40 20 0

0

-20° < T° < +5° 0

30000

60000

90000

-15 -30

Temperature (°C)

100

Acoustic recording during X-ray scan

-45 120000

Charra Vaskou, Badel, Charrier, Mayr , Ameglio, in prep)

Time (sec) Air temperature

Air temperature of control chamber

Stem temperature

AEcum

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Conclusion - Prospect •  X-ray observation may over-estimate the embolism but never under-estimate it! • 

Great opportunity to look inside living trees under stress

• 

Visualization will help to understand the mechanism.

• 

X-ray tomography is becoming a reference method for embolism evaluation!

• 

Need to ensure the tree health is not impacted by the x-ray radiations

• 

Need to improve the sample environments for stresses control (cold, heat, RH%, light)

• 

We always want more : higher resolution with larger field of view and faster scans.

ALIMENTATION AGRICULTURE ENVIRONNEMENT

Thank you

…and if you do not have a synchrotron, you’re welcome in Clermont-Ferrand

ALIMENTATION AGRICULTURE E Piaf NVIRONNEMENT

detector

The spatial resolution X-ray spot

Warning: the spatial resolution given by the manufacturer does not indicate the blurring The spot size is cruxial

pixel resolution =

det ector resolution G

X-ray spot

Same resolutions (given by the manufacturer!!)

blurred pixel = spot size × G

Detector resolution scan time small spot low x-ray intensity ALIMENTATION AGRICULTURE ENVIRONNEMENT

Quantitative resolution 1 mm

170

1 mm

120

160

niveau de gris

niveau de gris

130

110

100

150 140 130

90

0

100

200

position (pixel)

300

120

0

100

200

position (pixel)

ALIMENTATION AGRICULTURE ENVIRONNEMENT

300

Embolism visualisation Pinus needle

Olive tree leaf

Charra-Vaskou et al, 2012

ALIMENTATION AGRICULTURE ENVIRONNEMENT