36 3 The Standard Real Business Cycle (RBC) Model

At the business frequency: transitional dynamics does not conform to the data (c ... Propose a coherent platform to analyse growth and cycles. – It somewhat fails ...
338KB taille 12 téléchargements 339 vues
Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

3

36

The Standard Real Business Cycle (RBC) Model •

Perfectly competitive economy



Optimal growth model + Labor decisions



2 types of agents – Households – Firms



Shocks to productivity



Pareto optimal economy

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



Can be solved using a Social Planner program or solving for a competitive equilibrium



37

We will solve for the equilibrium

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

3.1

38

The Household



Mass of agents = 1 (no population growth)



Identical agents + All face the same aggregate shocks (no idiosyncratic uncertainty)

•;

Representative agents

39

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



Infinitely lived rational agent with intertemporal utility Et

X

β sUt+s

s=0

β ∈ (0, 1): •

discount factor,

Preferences over – a consumption bundle – leisure

• ; Ut = U (Ct, `t)

with U (·, ·)

– class C 2, strictly increasing, concave and satisfy Inada con-

40

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

ditions – compatible with balanced growth [more below]: ( U (Ct, `t) =

Ct1−σ 1−σ v (`t) log(Ct) + v(`t)

if σ ∈ R+\{1} if σ = 1

41

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Preferences are therefore given by   ∞ X Et  β sU (Ct+s, `t+s) s=0



Household faces two constraints



Time constraint ht+s + `t+s 6 T

(for convenience T=1)

=1

42

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



Budget constraint t+s } | B{z

Bond purchases

+ C + It+s} | t+s {z

Good purchases

6 (1 + rt+s−1)Bt+s−1 + W {zht+s} + | {z } | t+s Bond revenus



W ages

z|t+s{z Kt+s}

Capital revenus

Capital Accumulation Kt+s+1 = It+s + (1 − δ )Kt+s δ ∈ (0, 1):

Depreciation rate

43

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

The household decides on consumption, labor, leisure, investment, bond holdings and capital formation maximizing utility constraint, taking the constraints into account max

{Ct+s,ht+s,`t+s,It+s,Kt+s+1,Bt+s}∞ t=0

  ∞ X β sU (Ct+s, `t+s) Et  s=0

subject to the sequence of constraints   ht+s + `t+s 6 1    B t+s + Ct+s + It+s 6 (1 + rt+s−1)Bt+s−1 + Wt+sht+s + zt+sKt+s  Kt+s+1 = It+s + (1 − δ )Kt+s     Kt, Bt−1 given

44

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

max

{Ct+s,ht+s,Kt+1,Bt+s}∞ t=0

  ∞ X Et  β sU (Ct+s, 1 − ht+s) s=0

subject to Bt+s+Ct+s+Kt+s+1 6 (1+rt+s−1)Bt+s−1+Wt+sht+s+(zt+s+1−δ )Kt+s

Write the Lagrangian  Lt = Et

P∞

sU (C β t+s, 1 − ht+s) + Λt+s s=0

(1 + rt+s−1)Bt+s−1 + !

+Wt+sht+s + (zt+s + 1 − δ )Kt+s − Ct+s − Bt+s − Kt+s+1 

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

First order conditions (∀ s ≥ 0) Ct+s ht+s Bt+s Kt+s+1

: : : :

EtUc(Ct+s, 1 − ht+s) = EtΛt+s EtU`(Ct+s, 1 − ht+s) = Et(Λt+sWt+s) EtΛt+s = βEt((1 + rt+s)Λt+s+1) EtΛt+s = βEt(Λt+s+1(zt+s+1 + 1 − δ ))

and the transversality condition lim β sEtΛt+s(Bt+s + Kt+s+1) = 0

s−→+∞

45

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

46

Rearranging terms: ht+s Bt+s Kt+s+1

: EtU`(Ct+s, 1 − ht+s) = EtUc(Ct+s, 1 − ht+s)Wt+s : EtUc(Ct+s, 1 − ht+s) = βEt((1 + rt+s)EtUc(Ct+s+1, 1 − ht+s+1) : EtUc(Ct+s, 1 − ht+s) = βEt(Uc(Ct+s+1, 1 − ht+s+1)(zt+s+1 + 1 −

and the transversality condition lim β sEtUc(Ct+s, 1 − ht+s)(Bt+s + Kt+s+1) = 0

s−→+∞

47

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Simple example : Assume U (Ct, `t) = log(Ct) + θ log(1 − ht) ht+s Bt+s Kt+s+1

t+s : Et 1−h1 t+s = Et W Ct+s 1 : Et C1t+s = βEt(1 + rt+s) Ct+s+1 1 (z : Et C1t+s = βEt Ct+s+1 t+s+1 + 1 − δ )

and the transversality condition Kt+s+1 + Bt+s s lim Etβ s−→+∞ Ct+s

=0

48

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Remark : - It is convenient to write and interpret FOC for s = 0: ht Bt Kt+1

: U`(Ct, 1 − ht) = EtUc(Ct, 1 − ht)Wt : Uc(Ct, 1 − ht) = βEt((1 + rt)EtUc(Ct+1, 1 − ht+1)) : Uc(Ct, 1 − ht) = βEt(Uc(Ct+1, 1 − ht+1)(zt+1 + 1 − δ ))

and the transversality condition Kt+s+1 + Bt+s s lim Etβ s−→+∞ Ct+s

=0

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



We have consumption smoothing and



We have labor smoothing θ Wt(1 − ht)

3.2

49

θ = β (1 + rt)Et Wt+1(1 − ht+1)

The Firm



Mass of firms = 1



Identical firms + All face the same aggregate shocks (no idiosyncratic uncertainty)

;

Representative firm

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

50



Produce an homogenous good that is consumed or invested



by means of capital and labor



Constant returns to scale technology (important) Yt = AtF (Kt, Γtht)



Γt = γ Γt−1 Harrod neutral technological progress (γ > 1), At stationary (does not explain growth)

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

51

- Remark: one could introduce long run technical progress in three different ways: b F (Γ e K ,Γ h ) Yt = Γ t t t t t b is Hicks Neutral, Γ e is Solow neutral -Γ t t

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

52

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

53

- Harrod neutral technical progress and the preferences specified above are needed for the existence of a Balanced Growth Path that replicates Kaldor Stylized Facts: 1. The shares of national income received by labor and capital are roughly constant over long periods of time 2. The rate of growth of the capital stock is roughly constant over long periods of time 3. The rate of growth of output per worker is roughly constant over long periods of time 4. The capital/output ratio is roughly constant over long periods of time 5. The rate of return on investment is roughly constant over long periods of time 6. The real wage grows over time

- End of the remark

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

54

Yt = AtF (Kt, Γtht) •

Γt = γ Γt−1 Harrod neutral technological progress (γ > 1), At stationary (does not explain growth)

• At

are shocks to technology. AR(1) exogenous process log(At) = ρ log(At−1) + (1 − ρ) log(A) + εt

with εt ; N (0, σ2).

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

The firm decides on production plan maximizing profits max AtF (Kt, Γtht) − Wtht − ztKt

{Kt,ht}

First order conditions: Kt ht

: AtFK (Kt, Γtht) = zt : AtFh(Kt, Γtht) = Wt

Simple Example: Cobb–Douglas production function Yt = AtKtα(Γtht)1−α

First order conditions Kt ht

: αYt/Kt = zt : (1 − α)Yt/ht = Wt

55

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

3.3

56

Equilibrium

The (RBC) Model Equilibrium is given by the following equations (∀ t ≥ 0): 1. Exogenous Processes : log(At) = ρ log(At−1)+(1−ρ) log(A)+εt and Γt = γ Γt−1 2. Law of motion of Capital : Kt+1 = It + (1 − δ )Kt 3. Bond market equilibrium : Bt = 0 4. Good Markets equilibrium : Yt = Ct + It

57

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

5. Labor market equilibrium :

U`(Ct,1−ht) Uc(Ct,`t)

= AtFh(Kt, Γtht)

6. Consumption/saving decision + Capital market equilibrium : Uc (Ct , 1 − ht ) = βEt [Uc (Ct+1 , 1 − ht+1 )(At+1 FK (Kt+1 , Γt+1 ht+1 ) + 1 − δ)]

7. Financial markets : 1 + rt =

Et [Uc (Ct+1 , 1 − ht+1 )(At+1 FK (Kt+1 , Γt+1 ht+1 ) + 1 − δ)] Et Uc (Ct+1 , 1 − ht+1 )

58

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

3.4

An Analytical Example

• U (Ct, `t) = log(Ct) + θ log(`t), •

Yt = AtKtα(Γtht)1−α

Equilibrium θCt 1 − ht

Yt = (1 − α)  ht  1 1 Yt+1 = βEt +1−δ Ct Ct+1 Kt+1 Kt+1 = Yt − Ct + (1 − δ )Kt Yt = AtKtα(Γtht)1−α   Kt+1+s s =0 lim β Et s−→∞ Ct+s

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

3.5

Stationarization



We want a stationary equilibrium (technical reasons)



Deflate the model for the growth component Γt



On the example: xt = Xt/Γt

59

60

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

- Deflated Equilibrium θct yt = (1 − α) 1 − ht   ht  1 yt+1 1 β +1−δ = Et ct γ ct+1 kt+1 γkt+1 = yt − ct + (1 − δ )kt yt = Atktαh1−α t

lim s−→∞

γkt+1+s s β ct+s

=0

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

4

61

Solving the Model

4.1 •

In General

Non–linear system of stochastic finite difference equations under rational expectations



Very complicated



In general no analytical solution, need to rely on numerical approximation methods

62

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

4.2

The Nice Analytical Case

• U (c, `) = log(c) + θ log(`), γ •

= 1 (not needed) and δ = 1

Equilibrium θct 1 − ht

yt = (1 − α)   ht  1 yt+1 1 = βEt ct ct+1 kt+1 kt+1 = yt − ct yt = Atktαh1−α t

lim

s−→∞

γkt+1+s s β ct+s

=0

63

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



The solution is: ct = (1 − αβ )yt

1−α ⇒ kt+1 = αβκAtktα • ht = h = 1−α+θ(1−αβ)

with κ = h1−α

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

4.3

64

Numerical solution



Unfortunately: No closed form solution in general



Have to adopt a numerical approach



Log–linearize the equilibrium around the steady state (limits?)



Solve the linearized model using standard techniques

65

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



The solution to the log–linearize version of the model takes the form Xt+1

= MxXt + Mz Zt

(1)

Zt+1

= ρZt + εt+1

(2)

= PxXt + Pz Zt

(3)

Yt

where Xt, Zt and Yt collect, respectively, the state variables, the shocks and the variables of interest •

Resembles a VAR model

66

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



In the basic RBC model Xt =

{kt}

(4)

Zt =

{at}

(5)

Yt = {yt, ct, it, ht} •

(6)

Let’s evaluate the quantitative ability of the model to account for and explain the cycle.

67

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

ct 6

∆ct = 0  o

?

/ 

6

/

} i

/

I I

c⋆

R R



c0 6 -

7



R



R -

^

∆kt = 0

?

-

k0

k⋆

kt

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

5

Quantitative Evaluation

5.1

Calibration



Need to assign numerical values to the parameters



This is the calibration step



What does calibration mean? – Make explicit use of the model to set the parameters – A lot of discipline, but no systematic recipe – Have to set (α, β, θ, δ, γ, ρ, σ, A)

68

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

– Use data: (k/y, c/y, i/y, h, wh/y, r) – Compute (k/y, c/y, i/y, h, wh/y, r) in the model

69

70

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



In the data ∆y = 0.9% per quarter ; γ = 1.009.



In the data i/k = 0.076 on annual data. Use capital accumulation to get annual depreciation. i/k (model) = gamma − (1 − δ ) ; δ

= 0.01



In the data wh/y = 0.6, in the model wh/y = 1 − α ; α = 0.4.



In the data k/y = 3.32 on annual data. Using the Euler equation β

Then β = 0.98

=

γ αy/k + (1 − δ )

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

• h = 0.31,

such that θ = (1−α)(1−h) hc/y

71

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

5.2

72

Can the Business Cycle be Driven by Capital Dynamics?



Want to see whether capital dynamics can account for BC.



Perfect foresights dynamics



We study a case with fixed labor (h = h) and a variable labor case (U (c, 1 − h))

73

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Capital shock - Fixed hours Output

Consumption

0

−0.3

−0.6

0.5

−0.8 40 60 Quarters

−1

80

20

40 60 Quarters

Hours worked 0.4

−0.2

0.3

−0.4

0.2

% dev.

0

−0.6 −0.8 40 60 Quarters

80

40 60 Quarters

80

−0.1 −0.2

0.1

−0.1

20

Labor productivity (Wages) 0

−0.3 −0.4

0 20

0

80

% dev.

20

Capital

% dev.

1

−0.4

% dev.

% dev.

% dev.

−0.2

−1

1.5

−0.2

−0.1

−0.4

Investment

0

−0.5 20

40 60 Quarters

80

20

40 60 Quarters

80

74

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Capital shock - Variable hours Output

Consumption

0

−0.3

−0.6

0.5

−0.8 40 60 Quarters

−1

80

20

40 60 Quarters

Hours worked 0.4

−0.2

0.3

−0.4

0.2

% dev.

0

−0.6 −0.8 40 60 Quarters

80

40 60 Quarters

80

−0.1 −0.2

0.1

−0.1

20

Labor productivity (Wages) 0

−0.3 −0.4

0 20

0

80

% dev.

20

Capital

% dev.

1

−0.4

% dev.

% dev.

% dev.

−0.2

−1

1.5

−0.2

−0.1

−0.4

Investment

0

−0.5 20

40 60 Quarters

80

20

40 60 Quarters

80

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



75

The answer is clearly that capital dynamics cannot be the story for the business cycle.



Solow (1957): capital accumulation accounts for 1/8th of output growth.



Technical progress, not capital accumulation, is the engine of growth.



At the business frequency: transitional dynamics does not conform to the data (c and i for ex).



More (shocks?) is needed to understand the BC

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



76

That’s why the RBC literature proposes technological shocks (Brock & Mirman, 1972)

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

5.3

77

Technological Shocks



How to calibrate the shocks?



We have log(At) = log(yt) − α log(kt) − (1 − α) log(ht)



How to get kt? Use Capital accumulation with k0 = (k/y )y0



Estimate log(At) = ρ log(At−1) + εt We get ρ = 0.95 and σ = 0.0079. We set A = 1 without loss

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

of generality.

78

79

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

A good fit with estimated shocks Output

Hours Worked

0.1

0.04 Data Model

0.05

0.02 0

0 −0.02 −0.05 −0.04 −0.1 1950 1960 1970 1980 1990 2000 Quarters

−0.06 1950 1960 1970 1980 1990 2000 Quarters

Consumption

Investment

0.03

0.3

0.02

0.2

0.01

0.1

0 −0.01

0

−0.02

−0.1

−0.03 1950 1960 1970 1980 1990 2000 Quarters

−0.2 1950 1960 1970 1980 1990 2000 Quarters

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

80

A first success? •

Accounts for the main events in the data



The model correctly predicts the data: corr(y, ym)=0.75, corr(c, cm)=0.73, corr(i, im)=0.70.



BUT: corr(h, hm)=0.06



Let’s compute unconditional moments in the model (simulateHP filter-compute moments)

81

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

5.4

Results from Model Simulations

Variable Output

σ (·) σ (·)/σ (y ) ρ(·, y ) ρ(·, h)

1.70 1.49 Consumption 0.80 0.37 Investment 6.49 5.00 Hours worked 1.69 0.85 Labor productivity 0.90 0.67 (model in yellow)

– – 0.47 0.25 3.83 3.35 1.00 0.57 0.53 0.45

Auto – – 0.84 – – 0.68 0.78 – 0.83 0.81 – 0.82 0.84 – 0.81 0.99 – 0.68 0.86 – 0.89 0.98 – 0.68 0.41 0.09 0.69 0.97 0.92 0.72

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

5.5 •

82

A success(?)

The model correctly predicts the amplitude, serial correlation and relative variability of fluctuations



It accounts for a large part of output volatility



Correct ranking of the volatility of c, i, y, . . .



Large serial correlation, although it is smaller than in the data.



But

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

– C and N are not volatile enough – w (and r) are to too procyclical

83

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

6

84

Criticisms

6.1 •

In General

The research on RBC became so successful because – Propose a coherent platform to analyse growth and cycles – It somewhat fails such that there is room for work



Main victory: methodological (part of the toolkit of macroeconomists)



Main criticisms

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

85

– incorrect/implausible calibration of parameters (IES, Labor supply) ; need for sensibility analysis – counterfactual prediction for some prices: ∗

real wage is strongly procyclical in the model,



CRRA preferences are not compatible with the equity premium

∗ 6.2 •

price level is too strongly countercyclical

The Measure of Technological Shocks

Key problem: Are technological shocks at the source of BC?

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



86

Prescott [1986]: Technology shocks account for 70% of output volatility, but – Too volatile – Little evidence of large supply shocks (except oil prices) – Recessions have to be explained by technological regressions – Measurement problems (contamination by demand shocks if increasing returns, imperfect competition, labor hoarding) ; in the growth accounting literature, the SR was

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

87

a measure of our ignorance, now it is the engine of the model. 6.3 •

The Need for Persistent Shocks

Recall that log(At) = ρ log(At−1) + εt and ρ is large



Why do we need so persistent shocks?



Because the model possesses weak propagation mechanisms

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



Let’s see that in details

88

89

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock Technology shock

1

0.8

% dev.

0.6

0.4

0.2

0 10

20

30

40 Quarters

50

60

70

80

90

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock Consumption

Investment 6

1.5

0.6

4

1 0.5 0

% dev.

0.8

% dev.

% dev.

Output 2

0.4 0.2

20

40 60 Quarters

80

0

Capital

0

20

40 60 Quarters

−2

80

Hours worked

0.8

2

20

40 60 Quarters

80

Labor productivity (Wages) 0.8

1

0.6

0.6

0.4

% dev.

% dev.

% dev.

0.5 0.4

0 0.2 0

0.2

20

40 60 Quarters

80

−0.5

20

40 60 Quarters

80

0

20

40 60 Quarters

80

91

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock: Temporary vs Persistent Technology shock

1

0.8

% dev.

0.6

0.4

0.2

0 10

20

30

40 Quarters

50

60

70

80

92

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock: Temporary vs Persistent Consumption

1.5

0.6

1 0.5

0.4 0.2

20

40 60 Quarters

80

0

0.6

1

0.4 0.2

20

40 60 Quarters

40 60 Quarters

80

20

40 60 Quarters

80

Labor productivity (Wages) 0.8 0.6

0.5

−0.5

2

−2

80

0

20

4

0

Hours worked 1.5

% dev.

% dev.

Capital 0.8

0

6

% dev.

0

Investment 8

% dev.

0.8

% dev.

% dev.

Output 2

0.4 0.2

20

40 60 Quarters

80

0

20

40 60 Quarters

80

93

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock: Persistent vs Permanent Technology shock

1

0.8

% dev.

0.6

0.4

0.2

0 10

20

30

40 Quarters

50

60

70

80

94

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock: Persistent vs Permanent Consumption

Investment

2

6

1.5

1.5

4

1 0.5 0

% dev.

2

% dev.

% dev.

Output

1 0.5

20

40 60 Quarters

80

0

Capital

0

20

40 60 Quarters

−2

80

Hours worked

2

2

20

40 60 Quarters

80

Labor productivity (Wages) 2

1

1.5

1.5

1

% dev.

% dev.

% dev.

0.5 1

0 0.5 0

0.5

20

40 60 Quarters

80

−0.5

20

40 60 Quarters

80

0

20

40 60 Quarters

80

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



How to improve the model: – Introducing additional shocks – Improving the propagation mechanisms

95

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

7

Solving the puzzles?

7.1

Adding Demand Shocks



Government Expenditures



Change the Household’s budget constraint: Bt+1 + Ct + It + Tt 6 (1 + rt−1)Bt + Wtht + ztKt



Government Balanced Budget: Tt = Gt



Government expenditures are modeled as log(Gt) = ρ log(Gt−1) + (1 − ρg ) log(G) + εg,t

96

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

with εg,t ; N (0, σt2). • G/Y

= 0.2, ρg = 0.97, σg = 0.02.

97

98

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Government Spending Shock Government shock

1

0.8

% dev.

0.6

0.4

0.2

0 10

20

30

40 Quarters

50

60

70

80

99

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Government Spending Shock Output

Consumption

0.12

Investment

0

0.01

0.1

0

−0.05 0.06

% dev.

% dev.

% dev.

0.08 −0.1

0.04 −0.15

x 10

−3

40 60 Quarters

−0.2

80

Capital

−0.04

80

0.15

−4 −6

40 60 Quarters

80

0.1

0

40 60 Quarters

80

−0.02

0.05

20

20

Labor productivity (Wages) 0

0.2

% dev.

% dev.

40 60 Quarters

Hours worked

−2

−8

20

% dev.

0

20

−0.02 −0.03

0.02 0

−0.01

−0.04 −0.06

20

40 60 Quarters

80

−0.08

20

40 60 Quarters

80

100

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Technological and Government Spending Model Variable Output

σ (·) σ (·)/σ (y ) ρ(·, y ) ρ(·, h)

1.70 1.43 Consumption 0.80 0.62 Investment 6.49 4.62 Hours worked 1.69 0.85 Labor productivity 0.90 0.76 (model in yellow)

– – 0.47 0.43 3.83 3.24 1.00 0.59 0.53 0.53

– – 0.84 – – 0.68 0.78 – 0.83 0.54 – 0.75 0.84 – 0.81 0.97 – 0.68 0.86 – 0.89 0.90 – 0.68 0.41 0.09 0.69 0.87 0.58 0.72

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

7.2

101

Labor indivisibility



Hansen [1985]: work a fixed amount of hours or does not



Preferences ( U (Ct, 1 − ht) =



log(Cite ) + θ log(1 − h0) if she works log(Citu ) + θ log(1) if not

Randomly drawn with probability πt Ut

= πit (log(Cite ) + log(1 − n0)) + (1 − πit) (log(Citu ) + log(1)) = πit log(Cite ) + (1 − πit) log(Citu ) − θht

where hit = πitn0

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles



There exists full insurance (



102

e + τ A + Ke Cit t it it+1 6 (zt + 1 − δ )Kt + wth0 u + τ A + Ku Cit t it it+1 6 (zt + 1 − δ )Kt + Ait

Risk neutral insurance companies: τt = πt

if she works if not

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Labor indivisibility •

Utility collapses to U (Ct, 1 − ht) = log(Ct) − ht



the rest remains unchanged

103

104

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock - Indivisible Labor Model Output

Consumption

% dev.

1 0.5 0

8

0.8

6

0.6

4

0.4 0.2

20

40 60 Quarters

0

80

20

40 60 Quarters

−2

80

Hours worked 2

0.8

1.5

0.8

0.6

1

0.6

0.4 0.2 0

0.5 0

20

40 60 Quarters

80

−0.5

20

40 60 Quarters

80

Labor productivity (Wages) 1

1

% dev.

% dev.

Capital

2 0

% dev.

% dev.

1.5

Investment

1

% dev.

2

0.4 0.2

20

40 60 Quarters

80

0

20

40 60 Quarters

80

105

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

IRF to A Technological Shock - Indivisible Labor Model Output

Consumption

% dev.

1 0.5 0

8

0.8

6

0.6

4

0.4 0.2

20

40 60 Quarters

0

80

20

40 60 Quarters

−2

80

Hours worked 2

0.8

1.5

0.8

0.6

1

0.6

0.4 0.2 0

0.5 0

20

40 60 Quarters

80

−0.5

20

40 60 Quarters

80

Labor productivity (Wages) 1

1

% dev.

% dev.

Capital

2 0

% dev.

% dev.

1.5

Investment

1

% dev.

2

0.4 0.2

20

40 60 Quarters

80

0

20

40 60 Quarters

80

106

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

Indivisible Labor Model Variable Output

σ (·) σ (·)/σ (y ) ρ(·, y ) ρ(·, h)

1.70 1.95 Consumption 0.80 0.45 Investment 6.49 6.66 Hours worked 1.69 1.63 Labor productivity 0.90 0.45 (model in yellow)

– – 0.47 0.23 3.83 3.40 1.00 0.83 0.53 0.23

– – 0.84 – – 0.68 0.78 – 0.83 0.78 – 0.83 0.84 – 0.81 0.99 – 0.67 0.86 – 0.89 0.98 – 0.67 0.41 0.09 0.69 0.77 0.65 0.83

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

107

Contents 1 Introduction

2

2 Measuring the Business Cycle

4

2.1 Trend versus Cycle . . . . . . . . . . . . . . . . . . .

4

2.1.1

Cycle: Output Gap . . . . . . . . . . . . . .

7

2.1.2

Growth Cycle . . . . . . . . . . . . . . . . . .

10

2.1.3

Trend Cycle . . . . . . . . . . . . . . . . . . .

12

2.1.4

The Hodrick–Prescott Filter . . . . . . . . .

14

2.1.5

The HP filter at work . . . . . . . . . . . . .

16

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

2.2 U.S. Business Cycles . . . . . . . . . . . . . . . . . .

108 19

2.2.1

What are Business Cycles? . . . . . . . . . .

19

2.2.2

Main Real Aggregates . . . . . . . . . . . . .

21

2.2.3

Moments . . . . . . . . . . . . . . . . . . . .

28

2.3 A Model to Replicate Those Facts . . . . . . . . . .

32

3 The Standard Real Business Cycle (RBC) Model 36 3.1 The Household . . . . . . . . . . . . . . . . . . . . .

38

3.2 The Firm . . . . . . . . . . . . . . . . . . . . . . . .

49

3.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . .

56

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

109

3.4 An Analytical Example . . . . . . . . . . . . . . . .

58

3.5 Stationarization . . . . . . . . . . . . . . . . . . . . .

59

4 Solving the Model

61

4.1 In General . . . . . . . . . . . . . . . . . . . . . . . .

61

4.2 The Nice Analytical Case . . . . . . . . . . . . . . .

62

4.3 Numerical solution . . . . . . . . . . . . . . . . . . .

64

5 Quantitative Evaluation 5.1 Calibration . . . . . . . . . . . . . . . . . . . . . . .

68 68

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

110

5.2 Can the Business Cycle be Driven by Capital Dynamics? . . . . . . . . . . . . . . . . . . . . . . . . .

72

5.3 Technological Shocks . . . . . . . . . . . . . . . . . .

77

5.4 Results from Model Simulations . . . . . . . . . . .

81

5.5 A success(?) . . . . . . . . . . . . . . . . . . . . . . .

82

6 Criticisms

84

6.1 In General . . . . . . . . . . . . . . . . . . . . . . . .

84

6.2 The Measure of Technological Shocks . . . . . . . .

85

6.3 The Need for Persistent Shocks . . . . . . . . . . .

87

Franck Portier – TSE – Macro II – 2009-2010 – Chapter 3 – Real Business Cycles

7 Solving the puzzles? 7.1 Adding Demand Shocks . . . . . . . . . . . . . . . .

111 96 96

7.2 Labor indivisibility . . . . . . . . . . . . . . . . . . . 101